**EXAMPLE 1:**

**EXAMPLE 2 :**

The **shape **of an object located in some space is a geometrical description of the part of that space occupied by the object, as determined by its external boundary – abstracting from location and orientation in space, size, and other properties such as colour, content, and material composition.

**Mathematician and statistician ****David George Kendall**** defined shape this way: **

“Shape is all the geometrical information that remains when location, scale and rotational effects are filtered out from an object.”

Simple shapes can be described by basic geometry objects such as a set of two or more points, a line, a curve, a plane, a plane figure (e.g. square or circle), or a solid figure (e.g. cube or sphere). Most shapes occurring in the physical world are complex. Some, such as plant structures and coastlines, may be so arbitrary as to defy traditional mathematical description – in which case they may be analyzed by differential geometry, or as fractals.

“Shape is all the geometrical information that remains when location, scale and rotational effects are filtered out from an object.”

Simple shapes can be described by basic geometry objects such as a set of two or more points, a line, a curve, a plane, a plane figure (e.g. square or circle), or a solid figure (e.g. cube or sphere). Most shapes occurring in the physical world are complex. Some, such as plant structures and coastlines, may be so arbitrary as to defy traditional mathematical description – in which case they may be analyzed by differential geometry, or as fractals.

Subscribe to:
Posts (Atom)